台灣量子電腦的發展到哪裡了?–量子世代產學佈局

最近,IBM與Google都做出數十個量子位元(qubit)的量子電腦,IBM甚至開放雲端操作給使用者,許多企業乃至國家研究單位也投注大量資金與人才。國際爭相投入量子電腦,並不是因為量子電腦即將完全取代古典電腦,而是已經了解傳統電腦有其極限,例如28頁〈量子電腦加速未來化學〉提及,算出分子中的氫鍵結等獨特的化學交互作用,是傳統電腦難以企及的任務。這就是需要投入量子電腦開發的關鍵。

量子電腦的核心在於硬體,基礎是量子位元晶片。製造單個量子位元之外,還要有封裝並堆疊晶片的技術,讓量子位元在高密度的情況下還能有可行的佈線方式、乾淨的環境、與極低的串擾,有利於量子計算。中央研究院已能夠製作超導量子位元、控制量子位元的狀態,以及具有操作並讀取量子位元的技術,這部份的國內學界合作單位包括清華大學、中興大學、彰化師範大學、中山大學等。接下來我們期望透過台南沙崙科學園區的中央研究院南部院區,整合相關硬體、韌體、軟體人才,預計未來四至五年,能夠建構出整台量子電腦。

低溫操作:中央研究院量子電子元件實驗室設計用以裝載超導量子位元晶片的低溫系統,至多可以裝載10個量子位元。 (影像來源:陳啟東)
低溫操作:中央研究院量子電子元件實驗室設計用以裝載超導量子位元晶片的低溫系統,至多可以裝載10個量子位元。 (影像來源:陳啟東)
量子電腦所需的技術剛好與台灣現有高科技產業的強項若合符節,例如晶片製程與周邊線材、控制元件中的低溫晶片等。南部院區將規劃專屬廠房,整個量子位元晶片都可以有量產的機台製作,未來生產量子位元晶片將不局限於學校研究單位,從晶片到組裝都可以在南部院區完成。超導量子位元晶片的製作大致會使用到半導體的後段金屬製程,考量半導體產業既有設備的相容性,微調量產機台與製程,降低晶片雜質後,台灣可以達成8吋或12吋晶圓的量產。

量子電腦要真正發揮優勢,發展錯誤修正機制與容錯量子計算架構都勢在必行,屆時量子電腦的量子位元將超過上百萬個。台灣除了培養自己的人才以奠定技術基礎,可以利用現有在半導體方面的優勢,發展代工量子電腦高階零組件及設計製作周邊關鍵設備的能力,因應超大型量子電腦的趨勢,提升核心零組件與關鍵設備的量能。除此之外,也包含封裝並堆疊兩個以上量子位元的工藝,並要為硬體量身打造適合的軟體程式。

目前量子電腦周邊設備的供應鏈尚不明朗,幾年後可能出現歸一化的設備規範,台灣應嘗試從打造量子位元晶片開始切入,並加強國際合作。目前我們的研究量能投入製造量子電腦晶片以及與半導體相關的周邊元件,但同時也需要培養軟體人才,並且發展量子電腦的糾錯、程式語言等功能,以求更全面掌握量子電腦的整體技術。在探討量子電腦與台灣主力科技產業的關係之前,我們從量子電腦的製作與設計上的實際考量談起。

量子計算怎麼算?

量子電腦的重點技術在於量子位元的設計,而量子位元的特色是「量子平行性」,這根源於量子位元本質上的非古典特性,也就是量子疊加與量子糾纏(quantum entanglement,亦稱量子纏結)。

量子位元可以想成是一個人造原子,如果僅考慮它的最低能階,也就是基態|g〉與第一激發態|e〉,或者標註為|0〉與|1〉,分別對應傳統位元的0與1。量子疊加代表量子位元既不是|0〉也不是|1〉,而是處於|0〉與|1〉的疊加態:α|0〉+β|1〉。這個疊加態可用布洛赫球(Bloch sphere,見下圖)中的一個向量來表示,布洛赫球可以清楚表現出一個量子位元的各種量子態。如果以地球來做比擬,在南北極就是兩個基底,而在赤道的東西南北向就是四個常用的疊加態。

如果有N個量子位元,則它們可處在2N個基本態的疊加,代表2N個同時存在的狀態,並且可以同時進行計算,而這將展現驚人的量子平行性。以搜索問題為例,每個基本態都代表一個搜索對象,則運用量子平行性可以同時對全體對象進行檢查。然而量子計算的邏輯思維與古典計算完全不同,我們必須精巧地設計計算過程。例如依據問題類型為每個基本態添加不同的相位(在量子力學中,量子態可以表達為波函數,因此可以運用相位),使得2N個同時存在的基本態經歷如同波的破壞性干涉,最後留下代表答案的單一基本態,使得測量總是給出同一結果。由此可知,在量子計算中,量子位元的相位至關重要。

那麼如果利用光波、水波,或任何古典波動現象,也可以達到上述干涉效果嗎?是的,干涉的確不是主要問題。問題是出在其他地方:假設用古典波來模仿300個量子位元所做的搜尋,則必須為2300個波指定不同相位以便進行所需要的干涉,而這數目已經超過了全宇宙粒子數的總和。至此,不能指望這種替代方案。

量子糾纏是開發量子電腦的另一關鍵。糾纏態是多體系統(兩個以上的量子體系)的疊加態之一。以兩個量子位元為例,其糾纏態不能分離為兩個量子位元各自量子態的相乘,所以我們無法說明兩個量子位元各自處在什麼狀態。糾纏機制根源於量子體系間的交互作用或「耦合」。當耦合發生時,一個量子系統的狀態可以決定另一個量子系統的狀態或行為。例如藉由耦合:

‧ 一個量子位元q是|0〉或|1〉,就決定另一個量子系統S是否經歷某個量子過程U。

‧ 如果耦合前,q處於疊加態|0〉+|1〉,那麼耦合後,S處於未經歷U與經歷U的疊加。

‧ 這樣的情形可推廣到q1~qN皆處於|0〉+|1〉,且依序透過耦合決定S是否經歷U1~UN,則qi都使S處於未經歷Ui與經歷Ui的疊加,其結果是S將處於經歷2N種總過程的疊加。

如果每個總過程執行一項工作,例如指派一個相位,經由N次耦合行為後便可完成2N個相位指派的工作,也就是說要指定2300個相位是實際可行的。運用疊加配合糾纏,等於同時進行不同任務。

打造量子位元

基於量子位元與量子計算的特性,建構量子電腦時,至少要滿足幾項要求:首先,量子位元必須能初始化,也就是所有的量子位元回歸到同一個狀態,一般是基態。且量子位元必須能夠被獨立操控,使得其量子態可以達到布洛赫球上的任意點。其次,必須能夠控制量子位元之間的耦合,同時必須要有測量量子態的方法。再來要有夠長的同調時間,也就是位元可以長時間保持在α|0〉+β|1〉,這也是打造量子電腦最難克服的部份。最後,量子位元必須能被大量製作並擴充。

目前,可用來進行量子計算的系統包括超導體、半導體、光子或離子阱等量子位元系統。其中,超導系統對於上述要求都有不錯的表現,目前IBM和Google即使用超導量子位元做為量子電腦的核心,我們團隊也是以超導量子位元來建構量子電腦。

超導量子位元是由兩個並聯的超導約瑟夫森接面(Josephson junction)與十字形電容並聯而成(見下圖),量子位元經由ㄇ字型的電容,耦合到彎曲的微波共振腔(coplanar waveguide cavity)。約瑟夫森接面是超導量子位元的關鍵,由兩片超導薄膜(例如鋁)中間以約1奈米厚的絕緣層(例如二氧化三鋁)隔開,這兩片超導薄膜的巨觀波函數滲透到絕緣層中並且互相干涉。這樣的干涉導致一個「約瑟夫森電感」,這個等效電感與約瑟夫森接面的外加電容共同組成諧振器(resonator)。其中兩個最低能態|0〉與|1〉,即可用來建構量子位元,這兩個能態的能差所對應的頻率,約略等於諧振器的共振頻率,一般是設計在5~10GHz。藉由公式hf = kBT換算,10GHz大約是絕對溫度480mK,因此超導系統的量子位元都需要在遠低於這個溫度的環境下,才能正常操作。現在能達到低於這個溫度的致冷系統,已經相當普遍。

發佈留言